## Example: The Line Integral

Consider the vector field:

$$
A\left(\bar{r}_{c}\right)=z \hat{a}_{x}-x \hat{a}_{y}
$$

Integrate this vector field over contour $C$, a straight line that begins at the origin and ends at point $P\left(r=4, \theta=60^{\circ}, \phi=45^{\circ}\right)$.


Step 1: Determine the two equalities, one inequality, and proper $\overline{d \ell}$ for the contour $C$.

This contour is formed as the coordinate $r$ changes from $r=0$ to $r=4$, where $\theta=60^{\circ}$ and $\phi=45^{\circ}$ for all points. The two equalities and one inequality that define this contour are thus:

$$
0 \leq r \leq 4 \quad \theta=60^{\circ} \quad \phi=45^{\circ}
$$

and the differential displacement vector for this contour is therefore:

$$
\overline{d \ell}=\overline{d r}=\hat{a}_{r} d r
$$

Step 2: Evaluate the dot product $A\left(\bar{r}_{c}\right) \cdot \overline{d \ell}$.

$$
\begin{aligned}
\mathbf{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell} & =\left(z \hat{a}_{x}-x \hat{a}_{y}\right) \cdot \hat{a}_{r} d r \\
& =\left(z \hat{a}_{x} \cdot \hat{a}_{r}-x \hat{a}_{y} \cdot \hat{a}_{r}\right) d r \\
& =(z \sin \theta \cos \phi-x \sin \theta \sin \phi) d r
\end{aligned}
$$

Step 3: Transform all coordinates of the resulting scalar field to the same system as $C$.

The contour is a spherical contour. Recall that $z=r \cos \theta$ and $x=r \sin \theta \cos \phi$, therefore:

$$
\begin{aligned}
\mathbf{A}\left(\overline{r_{c}}\right) \cdot \overline{d \ell} & =(z \sin \theta \cos \phi-x \sin \theta \sin \phi) d r \\
& =(r \cos \theta \sin \theta \cos \phi-r \sin \theta \cos \phi \sin \theta \sin \phi) d r \\
& =r \sin \theta \cos \phi(\cos \theta-\sin \theta \sin \phi) d r
\end{aligned}
$$

Step 4: Evaluate the scalar field using the two coordinate equalities that describe contour $C$.

Recall that $\theta=60^{\circ}$ and $\phi=45^{\circ}$ at every point along the contour we are integrating over. Thus, functions of $\theta$ or $\phi$ are constants with respect to the integration! For example, $\cos \theta=\cos 45^{\circ}=0.5$. Therefore:

$$
\begin{aligned}
A\left(\bar{r}_{c}\right) \cdot \overline{d l} & =r \sin 60^{\circ} \cos 45^{\circ}\left(\cos 60^{\circ}-\sin 60^{\circ} \sin 45^{\circ}\right) d r \\
& =r \sqrt{3 / 4} \sqrt{1 / 2}(1 / 2-\sqrt{3 / 4} \sqrt{1 / 2}) d r \\
& =r \sqrt{3 / 8}\left(\frac{\sqrt{2}-\sqrt{3}}{\sqrt{8}}\right) d r \\
& =\left(\frac{\sqrt{6}-3}{8}\right) r d r
\end{aligned}
$$

Step 5: Determine the limits of integration from the inequality that describes contour C (be careful of order!).

We note the contour is described as:

$$
0 \leq r \leq 4
$$

and the contour $C$ moves from $r=0$ to $r=4$. Thus, we integrate from 0 to 4 :

$$
\int_{C} \boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell}=\int_{0}^{4}\left(\frac{\sqrt{6}-3}{8}\right) r d r
$$

Note: if the contour ran from $r=4$ to $r=0$ the limits of integration would be flipped! I.E.,

$$
\int_{4}^{0}\left(\frac{\sqrt{6}-3}{8}\right) r d r
$$

It is readily apparent that the line integral from $r=0$ to $r=4$ is the opposite (i.e., negative) of the integral from $r=4$ to $r=0$.

Step 6: Integrate the remaining function of one coordinate variable.

$$
\begin{aligned}
\int_{C} \boldsymbol{A}\left(\bar{r}_{c}\right) \cdot \overline{d \ell} & =\int_{0}^{4}\left(\frac{\sqrt{6}-3}{8}\right) r d r \\
& =\left(\frac{\sqrt{6}-3}{8}\right) \int_{0}^{4} r d r \\
& =\left(\frac{\sqrt{6}-3}{8}\right)\left(\frac{4^{2}}{2}-\frac{0^{2}}{2}\right) \\
& =\sqrt{6}-3
\end{aligned}
$$

